Olympiades Nationales de Mathématiques 2019

Sélections régionales 1er tour

Niveau 7C

20 janvier 2019 Durée 3 h

Solution

L'épreuve est notée sur 100 points. Elle est composée de cinq exercices indépendants ; Toute réponse doit être justifiée et les solutions partielles seront examinées ;

Calculatrice non autorisée

Exercice 1: (20 points)

Soit A un point d'un cercle Γ de centre O et de rayon R.

Soit Γ' un cercle de centre A qui rencontre Γ en P et Q.

M un point de Γ' distinct de P et Q tel que (MP) recoupe Γ en B et (MQ) recoupe Γ en D. On cherche à démontrer par deux méthodes que : $(BD) \perp (AM)$.

- 1° Méthode 1 : Puissance d'un point par rapport à un cercle.
- a) Soit Δ_{M} une droite quelconque passant par M qui coupe Γ en E et F. Placer E' = S_{Ω} (E) et montrer que $\overrightarrow{ME} \cdot \overrightarrow{MF} = OM^2 - R^2$ (ce nombre est appelé la puissance du point M par rapport à Γ).
- b) Que peut-on dire de $\overrightarrow{MP} \cdot \overrightarrow{MB}$ et $\overrightarrow{MQ} \cdot \overrightarrow{MD}$?
- c) Montrer que : $(BD) \perp (AM)$
- 2° Méthode 2 : Angles orientés
- a) Montrer que : $(\overrightarrow{AM}, \overrightarrow{AQ}) + 2(\overrightarrow{MQ}, \overrightarrow{MA}) = \pi$
- b) Montrer que : $(BD) \perp (AM)$

Solution

1° Méthode1 : Puissance d'un point par rapport à un cercle.

On a:

$$\overrightarrow{ME}.\overrightarrow{MF} = \overrightarrow{ME}.\overrightarrow{ME}' = OM^2 - \frac{EE'^2}{4} = OM^2 - R^2$$
.

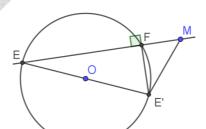
Comme ce nombre est indépendant de la droite $\Delta_{\rm M}$, alors

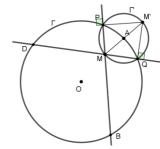
$$\overrightarrow{MP} \cdot \overrightarrow{MB} = \overrightarrow{MQ} \cdot \overrightarrow{MD} = OM^2 - R^2$$
.

Soit
$$M' = S_{\Lambda}(M)$$
, on a:

$$\begin{split} \overrightarrow{MA}.\overrightarrow{DB} &= \frac{1}{2}\overrightarrow{MM'}. \left(\overrightarrow{MB} - \overrightarrow{MD}\right) \\ &= \frac{1}{2} \left(\overrightarrow{MM'}.\overrightarrow{MB} - \overrightarrow{MM'}.\overrightarrow{MD}\right) \\ &= \frac{1}{2} \left(\overrightarrow{MP}.\overrightarrow{MB} - \overrightarrow{MQ}.\overrightarrow{MD}\right) \\ &- 0 \end{split}$$

D'où les droites (DB) et (AM) sont perpendiculaires.





Barème :					
1° a)	3				
b)	3				
c)	3				
2° a)	4				
b)	5				
Présentation, rédaction					
et idées	2				

2° Méthode 2 : Angles orientés

a)On remarque que AMQ est un triangle isocèle donc $(\overrightarrow{MQ}, \overrightarrow{MA}) = (\overrightarrow{QA}, \overrightarrow{QM})[\pi]$ et comme la somme des angles orientés d'un triangle est égale à π alors $(\overrightarrow{AM}, \overrightarrow{AQ}) + 2(\overrightarrow{MQ}, \overrightarrow{MA}) = \pi$

b) On a:

$$2\left(\overrightarrow{DB}, \overrightarrow{MA}\right) = 2\left(\overrightarrow{DB}, \overrightarrow{DM}\right) + 2\left(\overrightarrow{DM}, \overrightarrow{MA}\right) = 2\left(\overrightarrow{DB}, \overrightarrow{DQ}\right) + 2\left(\overrightarrow{MQ}, \overrightarrow{MA}\right) = 2\left(\overrightarrow{PB}, \overrightarrow{PQ}\right) + 2\left(\overrightarrow{MQ}, \overrightarrow{MA}\right) = 2\left(\overrightarrow{PB}, \overrightarrow{PQ}\right) + 2\left(\overrightarrow{MQ}, \overrightarrow{MA}\right) = 2\left(\overrightarrow{PM}, \overrightarrow{PQ}\right) + 2\left(\overrightarrow{MQ}, \overrightarrow{MA}\right) = \left(\overrightarrow{AM}, \overrightarrow{AQ}\right) + 2\left(\overrightarrow{MQ}, \overrightarrow{MA}\right) = \pi$$

D'où $2(\overrightarrow{DB}, \overrightarrow{MA}) = \pi \Rightarrow (\overrightarrow{DB}, \overrightarrow{MA}) = \frac{\pi}{2}[\pi]$. Donc les droites (DB) et (AM) sont perpendiculaires.

Exercice 2; (20 points)

Soit le nombre : $X = \sqrt[3]{9 + 4\sqrt{5}} + \sqrt[3]{9 - 4\sqrt{5}}$

1° Calculer X³

2° Montrer que X est un entier naturel que l'on déterminera.

Solution

$$1^{\circ} X^{3} = 18 + 3\left(\sqrt[3]{9 + 4\sqrt{5}} + \sqrt[3]{9 - 4\sqrt{5}}\right)$$

2° On remarque que \Rightarrow X³ = 18+3X. Alors X³ -3X-18 = 0 Avec $X = \sqrt[3]{9+4\sqrt{5}} + \sqrt[3]{9-4\sqrt{5}} \ge \sqrt[3]{9+4\sqrt{5}} \ge \sqrt[3]{8} = 2 \Rightarrow X \ge 2$ Soit $f(x) = x^3 - 3x - 18$, $\forall x \ge 2$. $f'(x) = 3x^2 - 3 \ge 9 > 0$ donc f est continue et strictement croissante sur $[2; +\infty[$ alors c'est une bijection de cet intervalle sur son image qui est $[-16; +\infty[$. D'où l'équation f(x) = 0 admet une unique solution sur $[2; +\infty[$. Or f(3) = 0, donc 3 est la seule solution de cette équation . On en déduit donc que $X = \sqrt[3]{9+4\sqrt{5}} + \sqrt[3]{9-4\sqrt{5}} = 3$.

Barème :								
1° Calcul de X ³	4							
2° Relation X ³ , X	4							
Introduction de f	2							
Etude de f	2							
Unicité de x tel que								
f(x) = 0	2							
Valeur $X = 3$	4							
Présentation, rédaction								
et idées	2							

Exercice 3: (20 points)

 1° Soit A = p^{2} (2p+1)² où p∈ N. Déterminer les restes possibles de la division de A par 10.

$$2^{\circ}$$
 Soit $S_n = \sum_{k=1}^n k^3 = 1^3 + 2^3 + ... + n^3$ avec $n \in \mathbb{N}^*$.

- a) Montrer que: $\forall n \in \mathbb{N}^*, S_n = \frac{n^2(n+1)^2}{4}$.
- b) Quel est le chiffre des unités de S_{2018} ?
- c) Quel est le chiffre des unités de $\left(\frac{S_{2019}}{900}\right)^{2019}$?

Solution

1° Soit $A = p^2(2p+1)^2$ où $p ∈ \mathbb{N}$. Déterminons les restes possibles de la division de A par 10.

reste de p	0	1	2	3	4	5	6	7	8	9
reste de 2p+1	1	3	5	7	9	1	3	5	7	9
reste de p ²	0	1	4	9	6	5	6	9	4	1
reste de (2p+1) ²	1	9	5	9	1	1	9	5	9	1
Reste de A	0	9	0	1	6	5	4	5	6	1

Alors les restes possibles de la division de A par 10 sont : 0; 1; 4; 5; 6; 9.

 2° a) Soit $S_n = \sum_{i=1}^{n} k^3$. Montrons par récurrence que

$$S_n = \frac{n^2 \left(n+1\right)^2}{4}$$

On a $S_1 = 1^3 = 1 = \frac{1^2 \times 2^2}{4}$, donc la proposition est vraie pour n = 1

Supposons que $S_n = \frac{n^2(n+1)^2}{4}$, or

$$S_{n+1} = \sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 = S_n + (n+1)^3 \Rightarrow$$

$$S_{n+1} = \frac{n^2 (n+1)^2}{4} + (n+1)^3 = \frac{(n+1)^2 [n^2 + 4(n+1)]}{4} = \frac{(n+1)^2 (n+2)^2}{4}.$$

D'où $\forall n \in \mathbb{N}^*$ on a $S_n = \sum_{n=1}^{\infty} k^3 = \frac{n^2 (n+1)^2}{4}$

b) On a
$$S_{2018} = \sum_{k=1}^{2018} k^3 = \frac{2018^2 \times 2019^2}{4} = 1009^2 \times 2019^2 = p^2 (2p+1)^2$$
 avec $p = 1009$ et d'après le

Barème:

et idées

Présentation, rédaction

2°a)

5

tableau de congruence de la question 1° on a le dernier chiffre de S_{2018} est 1.

c) D'après a) on a
$$S_{2019} = \sum_{k=1}^{2019} k^3 = \frac{2019^2 \times 2020^2}{4} = 2019^2 \times 1010^2 = (2019 \times 1010)^2$$
 donc

$$\frac{S_{2019}}{900} = \left(\frac{2019 \times 1010}{30}\right)^2 = \left(673 \times 101\right)^2$$

Or
$$\begin{cases} 673 \equiv 3 \ [10] \\ 101 \equiv 1 \ [10] \end{cases} \Rightarrow 673 \times 101 \equiv 3 [10] \Rightarrow (673 \times 101)^2 \equiv 9 [10] \Rightarrow (673 \times 101)^2 \equiv -1 [10].$$

D'où
$$\frac{S_{2019}}{900} \equiv -1[10] \Rightarrow \left(\frac{S_{2019}}{900}\right)^{2019} \equiv (-1)^{2019}[10] \Rightarrow \left(\frac{S_{2019}}{900}\right)^{2019} \equiv -1[10] \Rightarrow \left(\frac{S_{2019}}{900}\right)^{2019} \equiv 9[10]$$

D'où le chiffre des unités de $\left(\frac{S_{2019}}{900}\right)^{2019}$ est 9.

Exercice 4: (20 points)

Soient n un entier naturel non nul et a un réel.

$$1^{\circ}$$
 Résoudre le système
$$\begin{cases} u^n + v^n = 2\sin\alpha \\ uv = 1 \end{cases}$$
, où u et v sont des nombres complexes

$$\begin{split} &1^{\circ} \text{ R\'esoudre le syst\`eme } \begin{cases} u^n + v^n = 2 sin \alpha \\ uv = 1 \end{cases} \text{, où } u \text{ et } v \text{ sont des nombres complexes.} \\ &2^{\circ} \text{ R\'esoudre le syst\`eme } \begin{cases} (z_1 + i z_2)^n + (z_1 - i z_2)^n = 2 sin \alpha \\ z_1^2 + z_2^2 = 1 \end{cases} \text{, où } z_1 \text{ et } z_2 \text{ sont des nombres complexes.} \end{split}$$

Solution

1)
$$v = \frac{1}{u} \Rightarrow u^n + \frac{1}{u^n} = 2\sin\alpha \Rightarrow u^{2n} - 2u^n \sin\alpha + 1 = 0$$

C'est une équation du 2^{nd} degré en u^n , on a $\Delta' = \sin^2 \alpha - 1 = (i \cos \alpha)^2$ d'où

$$u^n = \sin \alpha - i \cos \alpha = e^{i(\alpha - \frac{\pi}{2})}$$
 ou $u^n = \sin \alpha + i \cos \alpha = e^{-i(\alpha - \frac{\pi}{2})}$.

Or $\left(u^n = e^{i(\alpha - \frac{\pi}{2})} \Leftrightarrow u = e^{i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}\right)$ et $\left(u^n = e^{-i(\alpha - \frac{\pi}{2})} \iff u = e^{-i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}\right) \text{ avec k un entier prenant les}$

valeurs de 0 à n-1.

Donc les solutions sont
$$\begin{cases} \mathbf{u} = e^{i(\frac{\alpha}{n} + \frac{(4\mathbf{k} - 1)\pi}{2n})} \\ \mathbf{v} = e^{-i(\frac{\alpha}{n} + \frac{(4\mathbf{k} - 1)\pi}{2n})} \end{cases} \text{ ou } \begin{cases} \mathbf{u} = e^{-i(\frac{\alpha}{n} + \frac{(4\mathbf{k} - 1)\pi}{2n})} \\ \mathbf{v} = e^{-i(\frac{\alpha}{n} + \frac{(4\mathbf{k} - 1)\pi}{2n})} \end{cases} \end{cases} \Rightarrow \begin{cases} \mathbf{u} = e^{-i(\frac{\alpha}{n} + \frac{(4\mathbf{k} - 1)\pi}{2n})} \\ \mathbf{v} = e^{i(\frac{\alpha}{n} + \frac{(4\mathbf{k} - 1)\pi}{2n})} \end{cases} \end{cases}$$

$$2) \begin{cases} (\mathbf{z}_1 + i\mathbf{z}_2)^n + (\mathbf{z}_1 - i\mathbf{z}_2)^n = 2\sin\alpha \\ (\mathbf{z}_1 + i\mathbf{z}_2)(\mathbf{z}_1 - i\mathbf{z}_2) = 1 \end{cases} \Leftrightarrow \begin{cases} \mathbf{u}^n + \mathbf{v}^n = 2\sin\alpha \\ \mathbf{u}\mathbf{v} = 1 \end{cases}$$

Barème: 1°) Elimination Equation 2nd degré Valeurs (u,v) 2°) Changement de 4 variable 6 Valeurs (z_1, z_2) Présentation, rédaction

$$2) \begin{cases} (z_{1}+iz_{2})^{n}+(z_{1}-iz_{2})^{n}=2\sin\alpha \\ z_{1}^{2}+z_{2}^{2}=1 \end{cases} \Leftrightarrow \begin{cases} (z_{1}+iz_{2})^{n}+(z_{1}-iz_{2})^{n}=2\sin\alpha \\ (z_{1}+iz_{2})(z_{1}-iz_{2})=1 \end{cases} \Leftrightarrow \begin{cases} u^{n}+v^{n}=2\sin\alpha \\ uv=1 \end{cases}$$

avec
$$z_1 + iz_2 = u$$
 et $z_1 - iz_2 = v \Rightarrow z_1 = \frac{1}{2}(u + v)$ et $z_2 = \frac{1}{2i}(u - v)$.

D'où

$$\Rightarrow \begin{cases} z_1 = \frac{e^{\frac{i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}} + e^{\frac{-i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}}}{2} \\ z_2 = \frac{e^{\frac{i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}} - e^{\frac{-i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}}}{2i} \end{cases} \text{ ou } \begin{cases} z_1 = \frac{e^{\frac{-i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}} + e^{\frac{i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}}}{2} \\ z_2 = \frac{e^{\frac{-i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}} - e^{\frac{i(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n})}{2n}}}{2i} \end{cases}$$

$$\Rightarrow \begin{cases} z_1 = \cos(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n}) \\ z_2 = \sin(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n}) \end{cases} \text{ ou } \begin{cases} z_1 = \cos(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n}) \\ z_2 = -\sin(\frac{\alpha}{n} + \frac{(4k-1)\pi}{2n}) \end{cases} \text{ avec } k \in \{0;1;2;...;n-1\} \end{cases}$$

Exercice 5: (20 points)

On considère la matrice $A = \begin{pmatrix} 1 & 0 \\ a & 2 \end{pmatrix}$ où a est un réel non nul. On se propose de déterminer les réels

 x_n et y_n tels que $A^n = x_n A + y_n I_2$, où I_2 est la matrice unité d'ordre 2.

1° Calculer A² et A³.

2° Montrer que : $\forall n \in \mathbb{N}$, $x_{n+1} = 3x_n + y_n$ et $y_{n+1} = -2x_n$.

3° Démontrer que : $\forall n \in \mathbb{N}$, $A^n = (2^n - 1)A + (2 - 2^n)I_2$.

4° Déterminer la matrice inverse de A²⁰¹⁹.

 2° On remarque que $A^2 = 3A - 2I$, et

$$A^3 = A \times (3A - 2I_2) = 3A^2 - 2A = 3(3A - 2I_2) - 2A = 7A - 6I_2$$

On sait que
$$\begin{cases} x_0 = 0 \\ y_0 = 1 \end{cases}$$
 et
$$\begin{cases} x_1 = 1 = 3x_0 + y_0 \\ y_1 = 0 = -2x_0 \end{cases}$$
 en plus $A^2 = 3A - 2I_2 \Rightarrow \begin{cases} x_2 = 3 = 3x_1 + y_1 \\ y_2 = -2 = -2x_1 \end{cases}$

Comme $A^n = x_n A + y_n I_n$, alors

$$A^{n+1} = A^{n} \times A = (x_{n}A + y_{n}I_{2})A = x_{n}A^{2} + y_{n}A = x_{n}(3A - 2I_{2}) + y_{n}A = (3x_{n} + y_{n})A - 2x_{n}I_{2}$$

Or $A^{n+1} = x_{n+1}A + y_{n+1}I_2$, d'où $x_{n+1} = 3x_n + y_n$ et $y_{n+1} = -2x_n$.

 3° Montrons par récurrence que $\forall n \in \mathbb{N} \quad \begin{cases} x_n = 2^n - 1 \\ y_n = 2 - 2^n \end{cases}$

On a
$$\begin{cases} x_0 = 0 = 2^0 - 1 \\ y_0 = 2 - 2^0 \end{cases}$$
 et $\begin{cases} x_1 = 1 = 2^1 - 1 \\ y_1 = 0 = 2 - 2^1 \end{cases}$.

La proposition est donc vraie pour n=0 et n=1

Supposons que $\begin{cases} x_n = 2^n - 1 \\ y_n = 2 - 2^n \end{cases}$ on a alors

$$\begin{cases} x_{n+1} = 3x_n + y_n = 3(2^n - 1) + 2 - 2^n = 2^{n+1} - 1 \\ y_{n+1} = -2x_n = -2(2^n - 1) = 2 - 2^{n+1} \end{cases}$$

D'où $\forall n \in \mathbb{N} \quad \begin{cases} x_n = 2^n - 1 \\ y_n = 2 - 2^n \end{cases}$. Ce qui montre que : $\forall n \in \mathbb{N}$,

$$A^{n} = (2^{n} - 1)A + (2 - 2^{n})I_{2}$$
.

4° D'après 3° on a

$$A^{n} = (2^{n} - 1)A + (2 - 2^{n})I_{2} \Rightarrow A^{n} = \begin{pmatrix} 2^{n} - 1 & 0 \\ (2^{n} - 1)a & 2(2^{n} - 1) \end{pmatrix} + \begin{pmatrix} 2 - 2^{n} & 0 \\ 0 & 2 - 2^{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ (2^{n} - 1)a & 2^{n} \end{pmatrix}$$

On a det $A^n = 2^n$ donc A^n est inversible soit B_n sa matrice inverse on a:

$$B_{n} = \frac{1}{2^{n}} \begin{pmatrix} 2^{n} & 0 \\ (1-2^{n})a & 1 \end{pmatrix} \implies B_{n} = \begin{pmatrix} 1 & 0 \\ (2^{-n}-1)a & 2^{-n} \end{pmatrix}$$

La matrice inverse de A^{2019} est donc la matrice $B_{2019} = \begin{pmatrix} 1 & 0 \\ (2^{-2019} - 1)a & 2^{-2019} \end{pmatrix}$.

Fin.